B.Tech. (ME) 2nd Semester G-Scheme Examination, May-2019

MATH-II

Paper-BSC-MATH-102-G

(Multivariables Calculus, Differential Equations and Complex Analysis)

Time allowed: 3 hours]

[Maximum marks: 75

Note: Question No. 1 is compulsory. Attempt five questions in total by selecting one question from each unit.

All questions carry equal marks.

- 1. (a) Evaluate $\int_{1}^{2} \left[\int_{3}^{4} (xy + e^{y}) dx \right] dy.$
 - (b) Solve $(2x^{3}\cos y + 3x^{2}y) dx + (x^{3}-x^{3}\sin y y) dy = 0$
 - (c) Define Mobius transformation, and when it is called univalent.
 - (d) prove that sinh z is analytic function.
 - (e) If n is an integer s.t. $n \neq -1$ and C is circle |z-a|=r. Then prove $\oint_C (z-a)^n dz = 0$
- (f) Evaluate $\oint_C (x^2 y^2 + 2ixy)$, where C is the contour |z| = 1. $6 \times 2.5 = 15$ 3015-P-3-Q-9(19) [P. T. O.

Download all NOTES and PAPERS at StudentSuvidha.com

Unit-I

2. (a) Evaluate $\iint \frac{(x-y)^2}{x^2+y^2} dx dy$, over the circle $x^2+y^2 \le 1$. 7.5

(b) By changing the order evaluate the integral

$$\int_{0}^{2\pi} \int_{0}^{\sqrt{1-y}} (x+y) dx dy.$$
 7.5

3. Verify Stoke's Theorem for \(\vec{f} = x^2\)i + xyj, integrated around the square in the plane z=0, whose sides are along the lines x = 0, x = a, y = 0 and y = a.

Unit-D

- 4. (a) Solve the equation $\frac{d^2y}{dx^2}$ + y cosec x by using method of variation of parameters. 7.5
 - (b) Solve Cauchy-Euler equation:

$$x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + y = \log x \sin (\log x).$$
 7.5

- (a) Express the polynomial x³+2x²-x-3 in terms of Legendre's polynomials.
 - (b) Find the power series solution about x=0, of (1-x²) y"-2xy'+2y=0.

3015

Unit-III

- State and prove necessary and sufficient conditions for f(z) to be analytic.
- (a) Show that the function u=e^{-2xy} sin (x²-y²) is harmonic. Find the conjugate function v and express u + iv as an analytic function of z.
 - (b) Determine the analytic function whose real part is (e^xx cos y-e^xy sin y).

Unit-IV

- 8. (a) Expand $\frac{e^{2z}}{(z-1)^3}$ in Laurent's series about its singularity. 7.5
 - (b) Evaluate the residues of $\frac{z^2}{(z-1)(z-2)(z-3)}$ at z=1,2,3 and ∞ , also determine their sum. 7.5
- (a) Verify Cauchy's integral theorem by integrating
 e^a along the boundary of the triangle with vertices
 at the points 1+i, -1+i and -1-i.
 8
 - (b) Use Cauchy's integral formula to evaluate $\frac{e^{2z}}{(z+1)^4(z+5)} dz, \text{ where C is the circle } |z| = 2.7$

3015